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This paper presents the free vibrational characteristics of isotropic coupled conical–

cylindrical shells. The equations of motion for the cylindrical and conical shells are

solved using two different methods. A wave solution is used to describe the

displacements of the cylindrical shell, while the displacements of the conical sections

of motion are used and the limitations associated with each thin shell theory are

discussed. Natural frequencies are presented for different boundary conditions. The

effect of the boundary conditions and the influence of the semi-vertex cone angle are

described. The results from the theoretical model presented here are compared with

those obtained by previous researchers and from a finite element model.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Cylindrical shells are widely reported in literature. Many researchers such as Donnell–Mushtari, Timoshenko, Reissner,
Flügge, to name a few, have developed thin shell theory arising from different simplifying assumptions based on Love’s
postulates. A range of general solutions for the cylindrical shell displacements and results for different boundary conditions
have been summarised by Leissa [1]. Conical shells have not been as widely reported in literature as in the case of
cylindrical shells. This is due to the increased mathematical complexity associated with the effect of the variation of the
radius along the length of the cone on the elastic waves. The approximate location of the natural frequencies for conical
shells has been found using the Rayleigh–Ritz method by several authors [1–5]. A transfer matrix approach was used by Irie
et al. [6] to solve the free vibration of conical shells. Tong [7] presented a procedure for the free vibration analysis of
isotropic and orthotropic conical shells in the form of a power series. Guo [8] studied the propagation and radiation
properties of elastic waves in conical shells.

Very little work can be found on the vibrations of coupled cylindrical–conical shells, of which common applications are
submarine hulls, aircraft, missiles and autonomous underwater vehicles (AUVs). Early analytical and experimental work to
determine the natural frequencies and mode shapes of coupled conical–cylindrical shells used the finite element method
[9]. The classic bending theory was used by Kalnins [10] and Rose et al. [11] to examine rotationally symmetric shells.
Hu and Raney [12] examined the effects of discontinuities at the joint connecting the cone and cylinder. A transfer matrix
approach was used by Irie et al. [13] to solve the free vibration of coupled cylindrical–conical shells. Efraim and Eisenberger
[14] applied a power series solution to calculate the natural frequencies of segmented axisymmetric shells. Patel et al. [15]
presented results for laminated composite joined conical–cylindrical shells using a finite element method.
All rights reserved.
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In this work, the authors present a different approach to describe the free vibrational characteristics of coupled isotropic
cylindrical–conical shells. The equations of motion for the cylindrical and conical shells are solved using two different
methods. The cylindrical shell equations are solved using a wave solution while the conical shell equations are solved using
a power series solution. These two methods are merged together for the first time to describe the dynamic response of the
coupled shells. Two thin shell theories are used corresponding to Donnell–Mushtari and the higher order equations of
Flügge. In the latter case it is shown that an approximation is required in order to apply the power series solution for the
conical shell. Results in terms of natural frequencies and mode shapes are compared with data available in literature. The
effect of the junction between the coupled shells and the boundary conditions is also investigated.

2. Equations of motion for thin shells

The equations of motion to describe the vibrations of cylindrical or conical shells can be derived according to a
particular thin shell theory using the standard derivation [1]. For completeness of the present study, the derivation of thin
shell theory is briefly reviewed in Appendix A.

2.1. Equations of motion for a cylindrical shell

Using a cylindrical coordinate system (x, y), u, v and w are the orthogonal components of the shell displacement in the
axial, circumferential and radial directions, respectively, as shown in Fig. 1. According to Flügge theory, the equations of
motion for a thin cylindrical shell are
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where a is the radius of the middle surface of the shell, b ¼ h=
ffiffiffiffiffiffi
12
p

a is the thickness parameter, h is the shell thickness and
f ¼ @w=@x is the slope. cL ¼ ½E=rð1� u2Þ�1=2 is the longitudinal wave speed. For Donnell–Mushtari theory, the equations of
motion simplify to
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Fig. 1. Coordinate system for a thin walled cylindrical shell.
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Fig. 2. Coordinate system for a thin walled conical shell.
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2.2. Equations of motion for a conical shell

For a conical shell, the coordinate system (xc , yc) is defined in Fig. 2. The equations of motion are given in terms of uc and
vc that are the orthogonal components of the displacement in the xc and yc directions, respectively. wc is the displacement
normal to the shell surface. a is the semi-vertex angle of the cone. s is the coordinate used in the standard derivation
presented in Appendix A. R is the radius of the cone at location xc. R0 is the mean radius of the shell and corresponds to the
origin of the coordinate system. Lc is the length of the cone along its generator, and R1, R2 are, respectively, the radii at the
smaller and larger ends of the cone. According to Flügge theory, the equations of motion are
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ccL ¼ ½Ec=rcð1� u2
c Þ�

1=2 is the longitudinal wave speed. Ec , rc and uc are, respectively, Young’s modulus, density and Poisson’s
ratio. Using Donnell–Mushtari theory, the differential operators ~Lij are zero. The Flügge equations of motion are more
complicated due to the numerous higher order terms. The differential operators Lij and ~Lij are given in Appendix B.

3. Solutions to the equations of motion

The equations of motion for the cylindrical and conical shells are solved using two different methods, and are then
merged together to provide the complete response of the coupled conical–cylindrical structure. The cylindrical shell
equations are solved using a wave solution whilst the conical shell equations are solved using a power series method.
Furthermore, expressions for the conical shell displacements are obtained for both the Donnell–Mushtari and Flügge
theories.

3.1. General solutions for the cylindrical shell

General solutions to the equations of motion for a cylindrical shell can be assumed as [1]

uðx; y; tÞ ¼ Uejknx cosðnyÞe�jot (10)

vðx; y; tÞ ¼ Vejknx sinðnyÞe�jot (11)

wðx; y; tÞ ¼Wejknx cosðnyÞe�jot (12)

where kn is the axial wavenumber and n is the circumferential mode number. Substituting the general solutions given by
Eqs. (10)–(12) into the Flügge equations of motion given by Eqs. (1)–(3) results in three linear equations in terms of U, V and
W. These linear equations can be arranged in matrix form as AU ¼ 0, where U ¼ ½U V W�T contains the unknown wave
amplitudes. The elements of the matrix A are given in Appendix C. For a non-trivial solution, the determinant of the matrix
A must be zero. The expanded determinant results in an eighth order characteristic equation in kn. For each value of
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kn;i ði ¼ 1 : 8Þ, the axial and circumferential amplitude ratios can be obtained as Cn;i ¼ Un;i=Wn;i and Gn;i ¼ Vn;i=Wn;i,
respectively. For harmonic motion, the complete solutions are given by

uðx; y; tÞ ¼
X1
n¼0

X8

i¼1

Cn;iWn;ie
jkn;ix cosðnyÞe�jot (13)
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wðx; y; tÞ ¼
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Wn;ie
jkn;ix cosðnyÞe�jot (15)

3.2. General solutions for the conical shell

The equations of motion for the conical shell are solved using the power series approach presented by Tong [7] for
shallow shell theory. This approach is applied here to the equations of motion for both the Donnell–Mushtari and the
Flügge thin shell theories. General solutions to the equations of motion for a conical shell given by Eqs. (7)–(9) can be
expressed as

ucðxc ; yc ; tÞ ¼ ucðxcÞcosðnycÞe
�jot (16)

vcðxc; yc; tÞ ¼ vcðxcÞ sinðnycÞ e
�jot (17)

wcðxc ; yc ; tÞ ¼ wcðxcÞcosðnycÞe
�jot (18)

where the xc-dependent component of the displacement can be expressed in terms of a power series by
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Solutions for the conical shell displacements for the two thin shell theories are presented in what follows.

3.2.1. Donnell–Mushtari equations

Using the low order Donnell–Mushtari theory, the equations of motion given by Eqs. (7) and (8) (and where the
differential operators ~Lij are zero) are multiplied by R2 while Eq. (9) is multiplied by R4 [7], resulting in
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Substituting Eqs. (16)–(21) into Eqs. (22)–(24) results in the following recurrence relations for m ¼ 0;1;2; . . .:
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The coefficients in Eqs. (25)–(27) are given in Appendix D.
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3.2.2. Flügge equations

Using the Flügge equations, the application of the power series solution is more complicated compared with the
Donnell–Mushtari theory due to the higher order terms. The coefficients of the operators Lij and ~Lij fi; j ¼ 1 : 3g include
terms of the form 1=Rk, k=1:4. Hence, the equations of motion given by Eqs. (17)–(19) are multiplied by R4 in order to apply
the power series solution. Furthermore, the terms with h2 in the membrane force Ns given by Eq. (A.6), given in Appendix A,
are neglected, as in the Donnell–Mushtari theory. The approximation of Ns results in a new ~L13 term, given by
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Substituting Eqs. (16)–(21) into Eqs. (7)–(9) (multiplied by R4) results in the following recurrence relations for
m ¼ 0;1;2; . . .:

amþ2 ¼
X6
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The recurrence coefficients in Eqs. (29)–(31) are given in Appendix E. It is important to note that if the h2 term in Eq. (A.6)
is not neglected, the power series method cannot be applied since the recurrence relation given by Eq. (29) would
become

amþ2 ¼
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~Aa;iam�5þi þ
X4

i¼1

~Ba;ibm�3þi þ
X6

i¼1
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The new terms cmþ2 and cmþ3 are not compatible with the term amþ2 on the left side of the equation. It can be concluded
that the use of the power series solution with the Flügge equations is only possible if the approximated membrane force Ns,
as in the Donnell–Mushtari theory, is used.

3.2.3. Conical shell displacements

Tong [7] showed that the xc-dependent part of the displacements can be expressed in terms of eight unknown
coefficients a0; a1; b0; b1; c0; c1; c2; c3; which can be determined from the boundary conditions at both ends on the conical
shell. In terms of the unknown coefficients, Eqs. (19)–(21) can be written as follows:

ucðxcÞ ¼ u � x; vcðxcÞ ¼ v � x; wcðxcÞ ¼ w � x (33)

where

u ¼ ½u1ðxcÞ � � � u8ðxcÞ� (34)

v ¼ ½v1ðxcÞ � � � v8ðxcÞ� (35)

w ¼ ½w1ðxcÞ � � � w8ðxcÞ� (36)

x ¼ ½a0 a1 b0 b1 c0 c1 c2 c3�
T (37)

x is the vector of the eight unknown coefficients. In Eqs. (34)–(36), uiðxcÞ, viðxcÞ and wiðxcÞ are the base functions of ucðxcÞ,
vcðxcÞ and wcðxcÞ, respectively. The convergence property of the series solutions ucðxcÞ, vcðxcÞ, wcðxcÞ given by Eqs. (19)–(21)
has been previously discussed by Tong [7] and are maintained for the thin-shell theories presented here.

4. Boundary and continuity conditions

The two different methods corresponding to the wave solution and power series method both require the application of
four boundary conditions at each end of the shell to determine the unknown coefficients. Thus, the cylindrical and conical
shells can be coupled together by applying the required continuity and equilibrium conditions at the interface.
The remaining boundary conditions are applied at the ends of the coupled cylindrical–conical shell. The forces, moments
and displacements at the junction and at the boundaries of the coupled shells are given in accordance with the sign
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convention shown in Fig. 3. At the cylinder–cone junction, continuity of displacements, slope, forces and bending moment
are given by

u ¼ Uc (38)

w ¼Wc (39)

v ¼ Vc (40)

@w

@x
¼
@wc

@xc
(41)

~Nx;c � Nx ¼ 0 (42)

Nxy;c þ
Mxy;c

R2

� �
� Nxy þ

Mxy

a

� �
¼ 0 (43)

Mx;c �Mx ¼ 0 (44)

~V x;c � Vx ¼ 0 (45)

To take into account the change of curvature between the cylinder and the cone, the following notation was introduced:

Uc ¼ uc cosa�wc sina (46)

Wc ¼ uc sinaþwc cosa (47)

~Nx;c ¼ Nx;c cosa� Vx;c sina (48)

~V x;c ¼ Vx;c cosaþ Nx;c sina (49)

The membrane forces Nx, Ny and Nxy, bending moments Mx, My and Mxy, transverse shearing Qx and the Kelvin–Kirchhoff
shear force Vx can be derived for both shells. Different boundary conditions can be applied to the extremities of the coupled
shells. In this work, three different boundary conditions have been considered, corresponding to free, clamped and shear
diaphragm. The various boundary conditions, for example for the cylindrical shell, are

Free end : Nx ¼ Nxy þ
Mxy

a

� �
¼ Mx ¼ Vx ¼ 0 (50)

Clamped end : u ¼ w ¼
@w

@x
¼ v ¼ 0 (51)

Shear-diaphragm ðSDÞ end : Nx ¼ v ¼ Mx ¼ w ¼ 0 (52)
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Fig. 4. Coupled cylindrical–conical shell.

Table 1
Frequency parameters for the free–clamped cylindrical–conical shell.

Mode order Frequency parameter Oc

n Z Irie et al. [13] Efraim et al. [14] Present (Donnell–Mushtari) Present (Flügge)

0 1 0.5047 0.503779 0.503752 0.505354

T – 0.609852 0.609855 0.609816

2 0.9312 0.930942 0.930916 0.930904

3 0.9566 0.956379 0.956315 0.956292

4 0.9718 0.971634 0.971596 0.971538

5 1.0122 1.012090 1.011884 1.011873

1 1 0.2930 0.292875 0.292908 0.293357

2 0.6368 0.635834 0.635819 0.636844

3 0.8116 0.811454 0.811446 0.811434

4 0.9316 0.931565 0.931481 0.931458

5 0.9528 0.952178 0.952189 0.952120

6 0.9922 0.992175 0.991959 0.991936

2 1 0.1010 0.099968 0.102034 0.100087

2 0.5032 0.502701 0.502899 0.502819

3 0.6916 0.691305 0.691479 0.691353

4 0.8592 0.859114 0.859017 0.858971

5 0.9164 0.915870 0.916072 0.915877

6 0.9608 0.960702 0.960475 0.960429

3 1 0.09076 0.087603 0.093771 0.087330

2 0.3921 0.391569 0.392199 0.391450

3 0.5148 0.514478 0.515184 0.514424

4 0.7537 0.753402 0.753595 0.753295

5 0.7970 0.796590 0.796983 0.796557

6 0.9197 0.919635 0.919391 0.919369

4 1 0.1477 0.144619 0.150574 0.144478

2 0.3312 0.330354 0.331698 0.330177

3 0.3965 0.395649 0.397604 0.395495

4 0.6473 0.646678 0.647700 0.646548

5 0.6932 0.692805 0.693197 0.692690

6 0.8720 0.871812 0.871555 0.871532

5 1 0.2021 0.199546 0.203896 0.199540

2 0.2966 0.296020 0.296330 0.295939

3 0.3730 0.370901 0.376227 0.370707

4 0.5805 0.579750 0.581667 0.579581

5 0.6138 0.613363 0.614222 0.613231

6 0.8187 0.817951 0.819801 0.818014

‘T’ denotes the purely torsional frequency.
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The four boundary conditions at each end of the coupled cylindrical–conical shell together with the eight continuity
equations at the junction can be arranged in matrix form BX ¼ 0, where X is the vector of the 16 unknown coefficients
given by

X ¼ ½a0 a1 b0 b1 c0 c1 c2 c3 Wn;1 � � � Wn;8�
T (53)

The vanishing of the determinant of matrix B gives the undamped natural frequencies of the joined shells.
n = 0; Ωc = 0.6672

n =1; Ωc = 0.4779

n =2; Ωc = 0.3466

n =3; Ωc = 0.2587

n = 4; Ωc = 0.211

n = 5; Ωc = 0.2097

Fig. 5. Lowest order mode shapes corresponding to n=0:5 SD–SD case.
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5. Results

5.1. Natural frequencies

To confirm the validity of the presented method, results available in Refs. [13,14] are reproduced here. A coupled
cylindrical–conical shell shown in Fig. 4 with free boundary conditions at the cone end and a clamped boundary for the
n = 0; Ωc = 0.8371

n = 1; Ωc = 0.5267

n = 3; Ωc = 0.2875

n = 4; Ωc = 0.2362

n = 5; Ωc = 0.2252

n = 2; Ωc = 0.3771

Fig. 6. Lowest order mode shapes corresponding to n=0:5 clamped–clamped case.
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cylinder is examined, with the following data: L=a ¼ 1, h=a ¼ 0:01, R1=a ¼ 0:4226, a ¼ 303. The shells are of the same
material with Young’s modulus E ¼ 2:11� 1011 N m�2, Poisson’s ratio u ¼ 0:3 and density r ¼ 7800 kg m�3.

The dimensionless frequency parameter Oc ¼ oa=cL for the lowest six values of the circumferential mode number
ðn ¼ 0; . . . ;5Þ are given in Table 1. The values of the frequency parameters agree well with those presented previously by Irie
et al. [13] and Efraim et al. [14]. A very small difference is observed between the two shell theories except at lower
frequencies, where the Donnell–Mushtari theory is not as accurate as the Flügge theory [1]. When n=0, the equation of
motion for the circumferential displacement is uncoupled from the equations of motion for the axial and radial
displacements for both the conical and cylindrical shells, yielding a purely torsional mode [1]. The frequency value of
the mode with order ½n Z� ¼ ½0 T� corresponds to the first purely torsional mode. This frequency is omitted in the work of
Irie et al. [13] since they did not consider the torsional solution. The purely torsional frequency is reported in Efraim et al.
n = 0; Ωc = 0.6618

n = 1; Ωc = 0.7200

n = 2; Ωc = 0.01001

n = 3; Ωc = 0.02566

n = 4; Ωc = 0.04649

n = 5; Ωc = 0.07271

Fig. 7. Lowest order mode shapes corresponding to n=0:5 free–free case.
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[14], but their corresponding mode shape appears to be in contrast with a purely torsional solution. To further validate the
analytical method presented in this work, a computational finite element model (FEM) was developed using Patran/
Nastran. Quadratic eight node (CQUAD8) elements were used for the 2D thin shell elements; the cylinder and the cone
were meshed with 20 elements in the axial direction and 30 in the circumferential direction. The Lanczos extraction
method was adopted in the analysis [16]. The lowest order mode shapes corresponding to n=0:5 for SD–SD,
clamped–clamped and free–free boundary conditions have been normalised and are, respectively, shown in Figs. 5–7.
The analytical results represented by the continuous line are practically indistinguishable to those obtained from the FE
model (represented by dots). Screenshots of the mode shapes from the FE model are also shown. The mode shapes for the
SD–SD and clamped–clamped cases are similar with a large deformation at the cylinder/cone junction for n=0. As the
circumferential mode number increases, a larger deformation of the cone with respect to the cylinder can be observed. For
the free–free case and n=0:1, the mode shapes show similar characteristics to the other boundary conditions while for nZ2,
a larger deformation for the cylindrical shell is observed compared to the displacement of the conical section.

5.2. Effect of the boundary conditions

The effect of boundary conditions on the free vibrational characteristics of a coupled conical–cylindrical shell is
examined. In Fig. 8, the lowest frequency parameter is plotted versus the circumferential mode number n. The frequencies
calculated using both the Donnell–Mushtari and Flügge equations are compared with the results given by the FE model. A
logarithmic scale was used to emphasize the small differences in the results. It can be seen that the results given by the
Flügge equations of motion match almost perfectly with the FE results. The results given by the Donnell–Mushtari
equations are affected by several issues for coupled cylindrical–conical shells. Firstly, it can be observed that they perform
less well at low frequencies compared with the results given by both the Flügge equations of motion and the finite element
model. Furthermore, they are in error for the free–free case. For this boundary condition, the equations for n=1 give two
incorrect frequencies of very low values that should be the zeroes associated with rigid body rotation. This is due to the
inconsistency of Donnell–Mushtari theory with free body motion, as reported by Kadi [17] and Kraus [18].

For clamped–clamped and SD–SD boundary conditions, the lowest frequency parameter decreases with n. For
free–clamped boundary conditions, the frequencies initially decrease and then increase after n=3. For the free–free case, a
very low frequency occurs at n=2.

5.3. Effect of the semi-vertex cone angle

Figs. 9–11 present the effect of the semi-vertex angle a of the conical shell on the frequency parameter Oc, for different
boundary conditions of the coupled shell. The following data for the coupled shells were used: L=a ¼ 1, h=a ¼ 0:01, Lc ¼ 1,
a 2 ½0;903

�. For extreme values of the semi-vertex angle corresponding to a=01 and 901, the conical shell degenerates to a
cylindrical shell and a circular plate, respectively. For the n=0 mode, the behaviour of the coupled shell is similar for all
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Fig. 10. Lowest frequency parameter Oc for free–clamped boundary conditions.
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Fig. 9. Lowest frequency parameter Oc for free–free boundary conditions.
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Fig. 11. Lowest frequency parameter Oc for clamped–clamped boundary conditions.
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boundary conditions considered, resulting in a relatively constant value in the frequency parameter for increasing values of
a and then a mainly linear decrease in Oc . The corresponding motion is primarily axial. As the conical shell changes from a
cylindrical shell (at a=0) to a plate-like structure (at a=901), a decrease in axial stiffness occurs resulting in a decrease in the
frequency parameter. A similar behaviour to the n=0 mode is observed for the n=1 bending mode for a free–free coupled
shell. For nZ2, the frequency parameter is almost constant for all values of a for the free–free shell. For a coupled shell with
a free boundary at the conical shell end and clamped at the cylindrical shell end, for n=1 a slight increase of the frequency
parameter with a is observed, showing a small mass effect. A stiffening effect then dominates after a=651. In the
free–clamped shell, higher order circumferential modes result in a wavelike behaviour due to greater shape complexity.
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6. Conclusions

A different approach to obtain the free vibrational characteristics of coupled cylindrical–coupled shells has been
introduced. Two different methods corresponding to a wave solution and power series method were used to obtain the
shell displacements. The shells were then coupled by means of continuity conditions at the cone/cylinder junction. Results
in terms of natural frequencies were compared for two different thin shell theories, corresponding to Donnell–Mushtari
and Flügge equations, as well as with data presented previously in Refs. [13,14]. It was shown that in order to use the Flügge
equations of motion with the power series solution, an approximation of the shear force is required. The effect of four
classical boundary conditions at the ends of the coupled shells on the natural frequencies was investigated.

In general, little difference was observed between the results given by the two shell theories. The Flügge equations were
shown to be in very close agreement with results from a finite element model, but the Donnell–Mushtari equations were
less accurate at low frequencies. Furthermore, for free–free boundary conditions of the coupled shells, the Donnell–Mushtari
equations generate errors in the values of the lowest frequency parameter for circumferential mode number n=1.

The method described in this work can also be applied to the coupled shells of different materials and thickness.

Appendix A. Equations of motion for thin isotropic shells

According to Flügge theory, the equations of motion for a thin shell are given by

@ðBNsÞ

@s
þ
@ðANysÞ

@y
þ
@A

@y
Nsy �

@B

@s
Ny þ

AB

Rs
Qs � ABrh

@2u

@t2
¼ 0 (A.1)

@ðANyÞ

@y
þ
@ðBNsyÞ

@s
þ
@B

@s
Nys �

@A

@y
Ns þ

AB

Ry
Qy � ABrh

@2v

@t2
¼ 0 (A.2)

�
AB

Rs
Ns �

AB

Ry
Ny þ

@ðBQsÞ

@s
þ
@ðAQyÞ

@y
� ABrh

@2w

@t2
¼ 0 (A.3)

where u, v and w, respectively, denote the orthogonal component of the displacement. r is the density and h is the shell
thickness. The equations are given in terms of two independent coordinates s and y. The parameters A, B, Rs and Ry depend
on the type of shell. The forces and moments in Eqs. (A.1)–(A.3) are given by [1]

Qs ¼
1

AB

@ðBMsÞ

@s
þ
@ðAMysÞ

@y
þ
@A

@y
Msy �

@B

@s
My (A.4)

Qy ¼
1

AB

@ðAMyÞ

@y
þ
@ðBMsyÞ

@s
þ
@B

@s
Mys �

@A

@y
Ms (A.5)

Ns ¼
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1� u2
es þ uey �

h2

12

1

Rs
�

1

Ry

� �
ks �
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� �� �
(A.6)

Ny ¼
Eh

1� u2
ey þ ues �

h2

12

1

Ry
�

1

Rs

� �
ky �

ey
Ry

� �� �
(A.7)

Nsy ¼
Eh

2ð1þ uÞ
esy �

h2

12

1

Rs
�

1

Ry

� �
t
2
�
esy

Rs

� �� �
(A.8)

Nys ¼
Eh

2ð1þ uÞ
esy �

h2

12

1

Ry
�

1

Rs

� �
t
2
�
esy

Ry

� �� �
(A.9)

Ms ¼
Eh3

12ð1� u2Þ
ks þ uky �

1

Rs
�

1

Ry

� �
es

� �
(A.10)

My ¼
Eh3

12ð1� u2Þ
ky þ uks �

1

Ry
�

1

Rs

� �
ey

� �
(A.11)

Msy ¼
Eh3

24ð1þ uÞ
t� esy

Rs

� �
(A.12)

Mys ¼
Eh3

24ð1þ uÞ
t� esy

Ry

� �
(A.13)

Vs ¼ Qs þ
1

B

@Mxy

@y
(A.14)
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E is Young’s modulus and u is Poisson’s ratio of the material. Eq. (A.14) is the Kelvin–Kirchhoff shearing force. The normal
strain es, ey, and shear strain esy of the middle surface and the rotations of the normal to the middle surface denoted by Ws

and Wy are given by

es ¼
1

A

@u

@s
þ

v

AB

@A

@y
þ

w

Rs
(A.15)

ey ¼
1

B

@v

@y
þ
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AB

@B

@s
þ

w

Ry
(A.16)

esy ¼
A

B

@ðu=AÞ

@y
þ

B

A

@ðv=BÞ

@s
(A.17)

Ws ¼
u

Rs
�

1

A

@w

@s
(A.18)

Wy ¼
v

Ry
�

1

B

@w

@y
(A.19)

The mid-surface changes in curvature ks, ky and twist t are given by

ks ¼
1
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@Ws
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þ
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AB
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(A.20)
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þ
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(A.21)

t ¼ A
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þ
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(A.22)

According to the Donnell–Mushtari theory, the terms including Qs and Qy in Eqs. (A.1) and (A.2) are neglected
and Eqs. (A.6)–(A.13), respectively, simplify to Ns ¼ ½Eh=ð1� u2Þ�ðes þ ueyÞ, Ny ¼ ½Eh=ð1� u2Þ�ðey þ uesÞ, Nsy ¼ Nys ¼

½Eh=2ð1þ uÞ�esy, Ms ¼ ½Eh3=12ð1� u2Þ�ðks þ ukyÞ, My ¼ ½Eh3=12ð1� u2Þ�ðky þ uksÞ, Msy ¼ Mys ¼ ½Eh3=24ð1þ uÞ�t. Furthermore,
the mid-surface changes in curvature ks, ky and twist t simplify to the following expressions:
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t ¼ � B
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1
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@

@y
1

A2

@w

@s
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(A.25)

For a cylindrical shell, the equations of motion for u, v and w can be derived from Eqs. (A.1)–(A.3) using the following
parameters; A ¼ a, B ¼ a, Rs ¼ 1, Ry ¼ a and s ¼ x=a, where a is the mean radius of the shell and u, v, w and x are defined as
in Fig. 1. For a conical shell, the equations of motion for uc, vc and wc can be derived using A ¼ 1, B ¼ s sina, Rs ¼ 1,
Ry ¼ s tana, as well as using the change of coordinate given by s ¼ R=sina and R ¼ R0 þ xc sina. R, R0, uc, vc, wc and xc are
defined in Fig. 2.

Appendix B. Differential operators for the conical shell

For the conical shell, omitting the subindex c, the differential operators are given by

L11 ¼ �
sin2 a

R2
þ
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R

@

@x
þ
@2

@x2
þ

1� u
2R2
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(B.1)
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L13 ¼ �
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R

@
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~L13 ¼ �
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Appendix C. Elements of matrix A

The elements of matrix A for the cylindrical shell are given by

A11 ¼ O2
� ðknaÞ2 �

ð1� uÞ
2

n2ð1þ b2
Þ (C.1)

A12 ¼ jnknað1þ uÞ=2 (C.2)

A13 ¼ juknaþ jb2
½ðknaÞ3 � n2ðknaÞð1� uÞ=2� (C.3)

A21 ¼ �A12 (C.4)

A22 ¼ O2
� ðknaÞ2ð1� uÞ=2ð1þ 3b2

Þ � n2 (C.5)

A23 ¼ �n� b2nðknaÞ2ð3� uÞ=2 (C.6)

A31 ¼ A13 (C.7)

A32 ¼ �A23 (C.8)

A33 ¼ 1�O2
þ b2
f½ðknaÞ2 þ n2�2 þ ð1� 2n2Þg (C.9)
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O ¼ oa=cL is the dimensionless frequency parameter. Using Donnell–Mushtari theory, Eqs. (C.1), (C.3), (C.5), (C.6) and (C.9),
respectively, reduce to A11 ¼ O2

� ðknaÞ2ð1� uÞn2=2, A13 ¼ jukna, A22 ¼ O2
� ðknaÞ2ð1� uÞ=2� n2, A23 ¼ �n and

A33 ¼ 1�O2
þ b2
½ðknaÞ2 þ n2�2.

Appendix D. Recurrence terms for the Donnell–Mushtari equations

The recurrence terms for the Donnell–Mushtari equations are given by

Aa;1 ¼ �rho2 sin2 a=Da (D.1)

Aa;2 ¼ �2rho2R0 sina=Da (D.2)

Aa;3 ¼ �½Gðm
2 � 1Þsin2 aþ rho2R2

0 � Ehn2=2ð1þ uÞ�=Da (D.3)

Aa;4 ¼ �GR0 sinaðmþ 1Þð2mþ 1Þ=Da (D.4)

Ba;1 ¼ �Gn sinaðumþm� 3þ uÞ=2Da (D.5)

Ba;2 ¼ �GR0nðmþ 1Þðuþ 1Þ=2Da (D.6)

Ca;1 ¼ �G sina cosaðum� 1Þ (D.7)

Ca;2 ¼ �GR0 sina cosaðmþ 1Þ (D.8)

Ab;1 ¼ Gn sinað3þ umþm� uÞ=2Db (D.9)

Ab;2 ¼ GR0nðmþ 1Þðuþ 1Þ=2Db (D.10)

Bb;1 ¼ �rho2 sin2 a=Db (D.11)

Bb;2 ¼ �2rho2R0 sina=Db (D.12)

Bb;3 ¼ ½�Gð�um2 þm2 � 1þ uÞsin2 a� Gn2 þ rho2R2
0�=2Db (D.13)

Bb;4 ¼ �GR0 sinaðmþ 1Þð2mþ 1Þ=2Db (D.14)

Cb;1 ¼ Ehn cosa=ð1þ uÞDb (D.15)

Ac;1 ¼ G cosa sin3 að1þ um� 2uÞ=Dc (D.16)

Ac;2 ¼ GR0 cosa sin2 að2þ 3um� 3uÞ=Dc (D.17)

Ac;3 ¼ GR2
0 cosa sinað1þ 3umÞ=Dc (D.18)

Ac;4 ¼ uGR3
0 cosaðmþ 1Þ=Dc (D.19)

Bc;1 ¼ Gn cosa sin2 a=Dc (D.20)

Bc;2 ¼ 2GR0n cosa sina=Dc (D.21)

Bc;3 ¼ GR2
0n cosa=Dc (D.22)

Cc;1 ¼ �rho2 sin4 a=Dc (D.23)

Cc;2 ¼ �4rho2R0 sin3 a=Dc (D.24)

Cc;3 ¼ �sin2 að�G cos2 aþ 6rho2R2
0Þ=Dc (D.25)

Cc;4 ¼ �2R0 sinað�G cos2 aþ 2rho2R2
0Þ=Dc (D.26)

Cc;5 ¼ ½�Dð�4m2 þ 4m3 �m4Þsin4 a� GR2
0 cos2 aþ Dð2n2m2 þ 4n2 � 4n2mÞsin2 a� Dn4 þ rho2R4

0�=Dc (D.27)

Cc;6 ¼ �DR0 sinað�2 sin2 am2 þ 2 sin2 amþ sin2 aþ 2n2Þðmþ 1Þð�1þ 2mÞ=Dc (D.28)
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Cc;7 ¼ �DR2
0ð�6 sin2 am2 þ sin2 aþ 2n2Þðmþ 2Þðmþ 1Þ=Dc (D.29)

Cc;8 ¼ 2DR3
0 sinað2mþ 1Þðmþ 3Þðmþ 2Þðmþ 1Þ=Dc (D.30)

where

Da ¼ GR2
0ðmþ 2Þðmþ 1Þ (D.31)

Db ¼ �GR2
0ðmþ 2Þðmþ 1Þðu� 1Þ=2 (D.32)

Dc ¼ �DR4
0ðmþ 4Þðmþ 3Þðmþ 2Þðmþ 1Þ (D.33)

G ¼ Eh=ð1� u2Þ;D ¼ Eh3=12ð1� u2Þ (D.34)

Appendix E. Recurrence terms for the Flügge equations

The recurrence terms for the Flügge equations are given byeAa;1 ¼ rho2s4=eDa (E.1)

eAa;2 ¼ 4rho2R0s3=eDa (E.2)

eAa;3 ¼ fG½ðm� 2Þ2 � 1�s4 þ ðGn2u=2þ 6rho2R2
0 � Gn2=2Þs2g=eDa (E.3)

eAa;4 ¼ sR0ð�9Gs2mþ 3Gs2 þ Gn2uþ 4Gs2m2 � Gn2 þ 4rho2R2
0Þ=
eDa (E.4)

eAa;5 ¼ ½Gð6R2
0m2 � 3mR2

0 � R2
0 � c2h2=2Þs2 þ Dn2uc2=2þ rho2R4

0 þ Gn2uR2
0=2� Dn2c2=2� Gn2R2

0=2�=eDa (E.5)

eAa;6 ¼ GR3
0sðmþ 1Þð1þ 4mÞ=eDa (E.6)

eBa;1 ¼ Gs3nðum� uþm� 5Þ=2eDa (E.7)

eBa;2 ¼ GR0s2nð3um� uþ 3m� 9Þ=2eDa (E.8)

eBa;3 ¼ GR2
0snð3umþ 3m� 3þ uÞ=2eDa (E.9)

eBa;4 ¼ GR3
0nðmþ 1Þðuþ 1Þ=2eDa (E.10)

eC a;1 ¼ Gcs3ð�1þ um� 2uÞ=eDa (E.11)

eC a;2 ¼ GR0cs2ð�2þ 3um� 3uÞ=eDa (E.12)

eC a;3 ¼ Gcsð2h2n2 þ 72umR2
0 þ h2n2 � 2c2h2 þ h2n2um� h2n2m� 24R2

0 � h2n2u� 2h2s2mÞ=24eDa (E.13)

eC a;4 ¼ GR0cðmþ 1Þð24R2
0u� 2h2s2 þ h2n2u� h2n2Þ=24eDa (E.14)

eAb;1 ¼ �Gs3nðum� 3uþmþ 1Þ=2eDb (E.15)

eAb;2 ¼ �GR0s2nð3um� 5uþ 3mþ 3Þ=2eDb (E.16)

eAb;3 ¼ �snð�36c2Dþ 36GumR2
0 � Guh2c2 þ 3Gh2c2 þ 36GmR2

0 þ 36GR2
0 � 12GuR2

0 þ 12c2DuÞ=24eDb (E.17)

eAb;4 ¼ �GR3
0ðmþ 1Þðuþ 1Þ=2eDb (E.18)

eBb;1 ¼ rho2s4=eDb (E.19)

eBb;2 ¼ 4rho2R0s3=eDb (E.20)

eBb;3 ¼ Gð�1þ u� uðm� 2Þ2 þ ðm� 2Þ2Þs4=2þ ð6rho2R2
0 � Gn2Þs2=eDb (E.21)

eBb;4 ¼ �R0sð�8rho2R2
0 � 3s2Gþ 4Gn2 þ 4Gus2m2 � 9Gus2mþ 3Gus2 � 4s2Gm2 þ 9s2GmÞ=2eDb (E.22)
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eBb;5 ¼ ½ð�3GuR2
0m2 � c2Du=2þ Dc2 þ c2D=2� GR2

0=2þ GuR2
0=2� Duc2 � Gh2mc2=8þ umR2

03G=2� 3=2GmR2
0

þ 1=8Gh2umc2 þ 3GR2
0mqþ 1=24c2Gh2m2 � 1=24Gh2uc2m2 � 3=2c2Dmþ c2Dm2 þ 3=2c2Dum

� c2Dum2Þs2 � Gn2R2
0 þ rho2R4

0�=
eDb (E.23)

eBb;6 ¼ �R0sðmþ 1Þð24GR2
0mþ 24c2Dmþ c2Gh2mþ 6GR2

0 � c2Gh2 � 6c2DÞðu� 1Þ=12eDb (E.24)

eC b;1 ¼ �Gcs2n=eDb (E.25)

eC b;2 ¼ �2GR0csn=eDb (E.26)

eC b;3 ¼ cnð�24GR2
0 þ 24Dm2s2 þ 4Gh2ums2 þ 2n2Gh2 þ 3Gh2s2 � 24n2D� Gh2um2s2 � 6Gh2ms2 þ 24c2D

� 2c2Gh2 � 3Gh2us2 þ Gh2m2s2Þ=24eDb (E.27)

eC b;4 ¼ �R0csnðmþ 1Þð�48Dm� 2Gh2mþ 2Gh2um� 24D� 3Gh2uþ 5Gh2Þ=24eDb (E.28)

eC b;5 ¼ �DR2
0cnðmþ 2Þðmþ 1Þð1þ uÞ=2eDb (E.29)

eAc;1 ¼ �Gcs3ð1þ um� 2uÞ=eDc (E.30)

eAc;2 ¼ �GR0cs2ð2þ 3um� 3uÞ=eDc (E.31)

eAc;3 ¼ ½�1=12cDð24� 36m� 12m3 þ 36m2Þs3

� 1=12cð12GR2
0 � 6Dn2uþ c2Gh2 þ 6Dn2umþ 36GuR2

0m� Dn2 � 6Dn2mÞs�=eDc (E.32)

eAc;4 ¼ �1=2R0cðmþ 1Þð�Dn2 þ 6Dms2 � 2Ds2 � 6Dm2s2 þ Dn2uþ 2GuR2
0Þ=
eDc (E.33)

eAc;5 ¼ 3DR2
0csðmþ 2Þðmþ 1Þm=eDc (E.34)

eAc;6 ¼ DR3
0cðmþ 3Þðmþ 2Þðmþ 1Þ=eDc (E.35)

eBc;1 ¼ �Gcs2n=eDc (E.36)

eBc;2 ¼ �2GR0csn=eDc (E.37)

eBc;3 ¼ �cnðDum2s2 þ 6Dms2 þ 2GR2
0 � 3Dm2s2 � 3Ds2 � Ds2uÞ=2eDc (E.38)

eBc;4 ¼ �Dcnðmþ 1ÞsR0ð3þ 2umþ u� 6mÞ=2eDc (E.39)

eBc;5 ¼ �DR2
0cnðm� 1Þmð�3þ uÞ=2eDc (E.40)

eC c;1 ¼ rho2s4=eDc (E.41)

eC c;2 ¼ 4rho2R0s3=eDc (E.42)

eC c;3 ¼ �s2ðc2G� 6rho2R2
0Þ=
eDc (E.43)

eC c;4 ¼ �2R0sðc2G� 2rho2R2
0Þ=
eDc (E.44)

eC c;5 ¼ ½Dð4m3 �m4 � 4m2Þs4 þ Dðmc2 � c2m� 2c2 � 4n2mþ 2n2m2 þ 4n2Þs2 þ rho2R4
0 � c2GR2

0 þ Dc2n2

þ Dn2c2 � c4D� Dn4�=eDc (E.45)

eC c;6 ¼ DR0sðmþ 1Þð�12s2 � 48s2m3 þ 72s2m2 � 24n2 � 12c2 þ 48n2mþ 12c2Þ=12eDc (E.46)eC c;7 ¼ DR2
0ð�6s2m2 þ s2 þ 2n2Þðmþ 2Þðmþ 1Þ=eDc (E.47)

eC c;8 ¼ �2DR3
0sð2mþ 1Þðmþ 3Þðmþ 2Þðmþ 1Þ=eDc (E.48)
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where eDa ¼ �GR4
0ðmþ 2Þðmþ 1Þ (E.49)

eDb ¼ R2
0ð12GR2

0 þ 24Dc2 þ Gh2c2Þðmþ 2Þðmþ 1Þðu� 1Þ=24 (E.50)

eDc ¼ DR4
0ðmþ 4Þðmþ 3Þðmþ 2Þðmþ 1Þ (E.51)

c ¼ cosa; s ¼ sina (E.52)
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